SYNTHESIS OF 1,2,9,10-BISMETHYLENEDIOXYDIBENZO[de,g]QUINOLINE-7-ONE. (CASSAMERIDINE).

F. N. Lahey and K. F. Mak,

Department of Chemistry, University of Queensland. Brisbane. Australia.

(Received in UK 2 September 1970; accepted for publication 8 October 1970)

Recently M. P. Cava et al⁽¹⁾ isolated from Cassytha americana (C. filiformis L., Lauraceae) a new oxoaporphine, Cassameridine. This was assigned structure VI on the basis of its ultra-violet and mass spectra. In the course of our synthetic studies, we have synthesized the oxoaporphine 1,2,9,10-bismethylenedioxydibenzo[de,g]quinoline-7-one, corresponding to cassameridine. In our work, we have confirmed the effective use of polyphosphate ester (P.P.E.) as a reagent for the Bischler - Napieralski reaction.^(2, 3)

The synthetic scheme for the above oxoaporphine is illustrated below:-

Ine ultra-violet spectrum of the synthetic product exhibits $\lambda_{max}^{249 \text{ m}\mu}$ (log ϵ 4.55), 272 (4.45), 320 (4.11), 350 (4.00), 388 (3.93) and 434 (3.79); $\lambda_{max}^{\text{ethanol-HC1}}$ 261 m μ (log ϵ 4.74), 290 (4.68), 381 (4.37), 499 (3.97). The infra-red spectrum shows a band at 1640 cm⁻¹ indicative of a conjugated carbonyl group while other bands occurred at 1510, 1410, 1340, 1240, 1040 and 960 cm⁻¹ considered diagnostic for the methylenedioxy group.⁽⁴⁾

The mass spectrum⁽⁵⁾ is consistent with a completely aromatic structure having no ready skeletal fragmentation and shows the molecular ion peak (M^+ 319) as the base peak. The

n.m.r. spectrum⁽⁶⁾ of the synthetic product shows two unsplit methylenedioxy groups at 3.34 τ and 3.75 τ and five aromatic protons at 2.43, 2.10, 1.71, 1.54 (doublets J = 6.5 Hz) and 1.24 (doublets J = 6.5 Hz). The assignments for these signals were carried out by comparison of these data with those quoted for the following oxoaporphines. All values are in τ units.

Compound	-0CH ₂ 0- 1,2	с ₃ – н	с ₄ – н	с ₅ – н	с ₈ – н	-0CH ₂ 0- 9,10	с ₁₁ – н
Cassamedine ⁽¹⁾	3.28 (S)	-	2.17	1.15	1.81	3.77 (8)	1.15 (S)
Liriodenine ⁽⁷⁾	3.28 (S)	2.37 (S)	C ₄ - H to	с ₁₁ – н 1.1	to 2.3 (6H	aromatic, m)	
Atherospermidine ⁽⁷⁾	3,28 (S)	-	С ₄ - Н to	С ₁₁ - Н 1.1	to 2.3 (6H	aromatic, m)	
Lanuginosine ⁽⁸⁾	3.25 (S)	2.33 (S)	2.3 (d)	1.30 (d)	1.74 (d)	-	0.97 (d)
Oxoxylopine ⁽⁹⁾	3.35 (S)	2.47 (S)	1.55 (d)	1.22 (d)	1.93 (d)	-	1.22 (d)

The signals at 3.34 τ and 3.75 τ are assigned to the two methylenedioxy groups at 1.2 and 9,10 positions respectively by analogy to those observed in the spectrum of cassamedine. Similarly by comparison, the 2.43 τ singlet is assigned to the proton C - 3, while the two doublets centred at 1.54 τ and 1.24 τ (J = 6.5 Hz) are attributed to the protons at C - 4 and C - 5. The remaining two one-proton singlets at 2.10 τ and 1.71 τ are assigned to C - 8 and C - 11 since C - 11 proton occurs at lower field than C - 8.

A direct comparison of our synthetic product with cassameridine is not possible as an authentic sample is not available. The U.V. spectra of the two compounds, however, are very similar. REFERENCES.

- 1. M. P. Cava, K. V. Rao, B. Douglas and J. A. Weisbach, J. Org. Chem., 1968, <u>33</u>, 2243.
- 2. Y. Kanaoka, E. Sato, O. Yonemitsu, Y. Ban, Tetrahedron Letters, (1964), 35, 2419.
- 3. K. S. Soh and F. N. Lahey, ibid, (1968), 1, 19.
- 4. L. H. Briggs, L. D. Colebrook, H. M. Fales and W. C. Wildman, Analyt. Chem., (1957), 29, 904.
- 5. We are grateful to Dr. J. Macleod of Australian National University, Camberra, Australia for the measurement of the mass spectrum.
- 6. The n.m.r. spectrum was measured on a Varian A-60 spectrometer in CF_3COOH solution with tetramethylsilane as internal standard.
- 7. I. R. C. Bick, C. K. Douglas, Tetrahedron Letters, (1964), 1629.
- 8. S. K. Talapatra, A. Patra and B. Talapatra, Chem. Ind., (London), 1969, 1056.
- 9. S. M. Kupchan, M. I. Suffness and E. M. Gordon, J. Org. Chem., (1970), 35, 1682.